
Number Shuffle Project

Tong Yi

Implement number shuffle game in https://www.artbylogic.com/puzzles/numSlider/numberShuffle.htm.

Warning:

1. This is copyrighted materials; you are not allowed to upload to the Internet.

2. Our project is more complicate than similar projects in the Internet and uses a different approach.

(a) Ask help only from teaching staff of this course.

(b) Use solutions from ChatGPT or online tutoring websites like, but not limited to, chegg.com violates
academic integrity and is not allowed.

1 Files of the Project

We use Object-oriented Programming approach.

1. Create directory numShuffle to hold codes of number shuffle project if you have not done so. Said differently,
you only need to run the following command once.

mkdir numberShuffle

2. Move to the above directory.

cd numberShuffle

3. Create Board.hpp with the following contents. Warning: do not write Board.hpp as board.hpp. C++ is a
case-sensitive language. You can download from Board.hpp from https://tong-yee.github.io/135/f24/

Board.hpp.

Board.hpp is the header file of Board class that declares data members and operations (aka methods) on
those data members.� �

1 #ifndef Board_H

2 #define Board_H

3

4 class Board {

5 public:
6 Board(); //3 * 3 board

7 Board(int m, int n); //m * n board

8 Board(int** arr, int m, int n); //m * n board where data is stored in a 2-dimensional

array

9 ~Board(); //destructor

10 void randomize();

11 void getInfo(); //find out emptyCellRow, emptyCellCol, and numCorrect from panel

12 bool valueCorrect(int row, int col) const;

1

https://www.artbylogic.com/puzzles/numSlider/numberShuffle.htm
https://www.artbylogic.com/puzzles/numSlider/numberShuffle.htm
https://tong-yee.github.io/135/f24/Board.hpp
https://tong-yee.github.io/135/f24/Board.hpp
https://tong-yee.github.io/135/f24/Board.hpp
https://tong-yee.github.io/135/f24/Board.hpp

13 void display() const;
14 void slideUp();

15 void slideDown();

16 void slideLeft();

17 void slideRight();

18 void play();

19

20 private:
21 int numRows;

22 int numCols;

23 int** panel;

24 int emptyCellRow;

25 int emptyCellCol;

26 int numCorrect; //cell with correct position

27 };

28 #endif� �
4. Your main task is to implement Board.cpp, which defines constructors, the destructor, and methods de-

clared in Board.hpp.

(a) Note that, in Board.hpp, data members are declared but not yet initialized. The data members are
initialized in constructors.

(b) Similarly, constructors, the destructor, and methods are declared (have function header) in Board.hpp

but not defined (no function body).

1.1 Explanation of Board.hpp

A board is represented by a two dimensional array of integers. Key methods are slide left/right/up/down and
play.

1.1.1 Include guard� �
1 #ifndef Board_H

2 #define Board_H

3 ...

4 #endif� �
Lines 1, 2, and 4 in the above code is called include guard. With it, even if #include "Board.hpp" is used

more than once, since Board_H is defined already after the first occurrence of #include "Board.hpp", the contents
in ... are only declared once.

The details of data members, constructors and methods in Board class of the game are discussed as follows.

1.2 Data members

1. Variable numRows is an integer representing the number of rows of the board in number shuffling game.

2. Variable numCols is an integer representing the number of columns of the board.

3. The board is represented by variable panel of int** type.

2

(a) An int pointer int* saves the initial address of an array of integers, which represents a row. The
following is an example of using int* type variable.� �

1 int* rowPtr = new int[numCols];� �
i. Warning: cannot write

int* rowPtr = new int[numCols]; as
int* rowPtr = new int[3]; //wrong code
otherwise, rowPtr points to a memory block holding only 3 integers. However, numCols is a
VARIABLE initialized when a constructor is called.

ii. Expression new int[numCols] returns the initial address of a dynamically allocated space that
holds numCols integers.

A. Assume that numCols is 3. Assume that the initial address of a dynamically allocated memory
is 0x20000, where 0x before 20000 means the number is hexadecimal, whose base is 16. That
is, 0x20000 equals 2 * 164 = 131072 in decimal system. A memory address is represented in
hexadecimal number.

B. Each integer takes 4 bytes. As a result, the address of the second integer is 0x20000 + 4 =
0x20004, and the address of the third integer is 0x20000 + 4*2 = 0x20008.

0x20000 0x20004 0x20008

C. Note that the value of each memory slot is not decided yet. That is, expression new int[numCols]
only allocates memory to hold numCols integers. It remains to initialize integers stored in those
memories.

D. Statement int* rowPtr = new int[numCols]; puts that initial address to rowPtr. After the
above statement, int* variable rowPtr, whose value is the address of an int, is set to be 0x20000.
Assume the address of rowPtr is 0x36000.

0x36000 0x20000 0x20004 0x20008

rowPtr 0x20000

It is equivalent to let rowPtr point to the dynamically allocated memory, illustrated as follows.

0x20000 0x20004 0x20008

rowPtr

Each variable has a name, occupies some memory, and has a value.
variable memory of the variable variable value

rowPtr 0x36000 0x20000

the first element in the array 0x20000 not initialized yet

the second element in the array 0x20004 not initialized yet

the third element in the array 0x20008 not initialized yet

How to access the value of a memory?
address of a memory value of the memory

rowPtr *rowPtr, aka rowPtr[0], the leftmost element.

rowPtr+1 *(rowPtr + 1), aka rowPtr[1], the second element to the left

rowPtr+2 *(rowPtr + 2), aka rowPtr[2], the third element to the left

• Expression rowPtr + n, where n ≥ 0, is not to add n literally to rowPtr. Instead, it means
to add n * size of the type pointed by rowPtr.

3

In this example, rowPtr is int* type, and the type pointed by rowPtr is int.
Each int type takes 4 bytes. Suppose rowPtr is 0x20000. Then rowPtr + 1 is 0x20004.

• In general, if rowPtr is the address of the first element of the array, then rowPtr + n is the
address of the nth element of the array.

(b) Observe that rowPtr is a variable of int* type, which saves the address of one individual integer or the
initial address of an array of integers.

If we use an array of int* – distinct from int – type, the first array element saves the address of
elements in the first row, the second array element saves the address of the elements of the second row,
and so on. Then we have a panel of numRows* numCols integers.

The initial address of an array of int* type can be saved in an int** variable.

Type int** is a pointer to int pointers, which saves the initial address of an array of int pointers int*.
You may think int** as an array of one-dimensional array, which is actually a two-dimensional array.

4. To track changes of panel after each slide operation, declare emptyCellRow, emptyCellCol, and numCorrect.
More details will be covered in Task B.

5. Variable emptyCellRow is the row index of the empty cell in the panel.

6. Variable emptyCellCol is the column index of the empty cell in the panel.

7. Variable numCorrect is the number of non-empty entries sitting in the correct cell, that is, for a cell at the
ith row and jth column, its value should be i∗numCols+j+1, where 0 ≤ i < numRows and 0 ≤ j < numCols.

(a) For example, in the following 3 * 3 panel, only number 2 (in bold green) sits in the correct cell, not any
other non-empty entry. Hence numCorrect is 1. Also, emptyCellRow is 2 and emptyCellCol is 2.

col index

row index 0 1 2
0 8 2 7
1 1 6 5
2 4 3

(b) After sliding down operation, the layout is changed to be the following.

col index

row index 0 1 2
0 8 2 7
1 1 6
2 4 3 5

Now emptyCellRow is 1 and emptyCellCol is 2, numCorrect is still 1.

(c) Slide right and here is the layout.

col index

row index 0 1 2
0 8 2 7
1 1 6
2 4 3 5

Now emptyCellRow is 1 and emptyCellCol is 1, numCorrect is changed to 2, since number 6 is in
correct position, besides number 2.

4

2 Task A: Define constructors and destructors in Board.cpp

The purpose of constructor is to initialize data members. A class may have multiple constructors. Different
constructors have different parameter lists. Each constructor has exactly the same name as class, no return type,
not even void.

2.1 The default constructor Board()

The default constructor does not take any parameter. It does the following:

1. Set data members numRows and numCols to be 3.

Warning: the following code is wrong. int before numRows means to the varialbe is a local variable for
constructor Board, but not data member numRows.� �

1 Board::Board() {

2 ��int numRows = 3;

3 ... //omit other code

4 }� �
Correct way:� �

1 Board::Board() {

2 numRows = 3;

3 ... //omit other code

4 }� �
2. Dynamically apply for space to hold a numRows * numCols integer array. Put the initial address in data

member panel.

3. Set the elements of panel to be 1, 2, · · · , numRows * numCols. The numbers are placed from the top row
to the bottom row, and in each row, from left to right.

4. In Task A, we do not randomize the placement of numbers yet.

The default constructor is called when a user does not know or bother with the details of a class and just want
to create an object of the class. It is like to order a hamburger skipping the details of choosing the ingredients in
its meat-, vegetable-, and bread- layers (aka data members of a hamburger class). Such a “typical” (or default)
hamburger object may contain beef, lattice, and wheat bread (aka values for the corresponding data members),
created by the default hamburger maker (aka the default constructor of hamburger class). No input parameter is
taken.

After calling the default constructor, numRows and numCols are set to be 3 and panel is the initial address
of a dynamically allocated two-dimensional array with 3 rows, each row has 3 integers. The layout of panel is as
follows.

Note that int* is a pointer normally has 8 bytes in 64-bit operating system and int has 4 bytes. Row indices
are shown in vertical direction, starting from 0. Column indice are displayed in horizontal direction, starting from
0. panel is an array of int* type, and int* can be illustrated as a pointer pointing to an array of integers.

5

0 1 2

panel +--------+ +----+----+----+

0 | |-->| 1 | 2 | 3 |

+--------+ +----+----+----+

1 | |-->+----+----+----+

+--------+ | 4 | 5 | 6 |

2 | | +----+----+----+

+--------+-->+----+----+----+

| 7 | 8 | 9 |

+----+----+----+

In each row, the elements of integers are placed in consecutive memory, however, the elements of each adjacent
rows may not be in consecutive spaces. This is a difference between a dynamically allocated two-dimensional array
and a static allocated two dimensional arrayint arr[][3] = { {1, 2, 3}, {4, 5, 6} }; Here is an illustration
of arr.

0 1 2

arr +----+----+----+

0 | 1 | 2 | 3 |

+----+----+----+

1 | 4 | 5 | 6 |

+----+----+----+

2.2 A nondefault constructor Board(int m, int n)

1. If both given parameters m and n are larger than or equal to 2, use m and n to set data members numRows
and numCols, respectively, otherwise, set data members numRows and numCols to be 3.

2. Dynamically apply for space to hold a numRows * numCols integer array. Put the initial address in data
member panel.

3. Set the elements of panel to be 1, 2, · · · , numRows * numCols-1. The numbers are placed from the top row
to the bottom row, and in each row, from left to right.

4. In Task A, we do not randomize the placement of numbers yet.

After calling Board(2, 3), numRows is 2 and numCols is 3 and panel is the initial address of a dynamically
allocated two-dimensional array with 2 rows, each row has 3 integers. The layout of panel is as follows.

0 1 2

panel +--------+ +----+----+----+

0 | |-->| 1 | 2 | 3 |

+--------+ +----+----+----+

1 | |-->+----+----+----+

+--------+ | 4 | 5 | 6 |

+----+----+----+

After calling Board(3, 5), numRows is 3 and numCols is 5 and panel is the initial address of a dynamically
allocated two-dimensional array with 3 rows, each row has 5 integers. The layout of panel is as follows.

6

0 1 2 3 4

panel +--------+ +----+----+----+----+----+

0 | |-->| 1 | 2 | 3 | 4 | 5 |

+--------+ +----+----+----+----+----+

1 | |-->+----+----+----+----+----+

+--------+ | 6 | 7 | 8 | 9 | 10 |

2 | | +----+----+----+----+----+

+--------+-->+----+----+----+----+----+

| 11 | 12 | 13 | 14 | 15 |

+----+----+----+----+----+

Related: a default hamburger is one with beef, lettuce and wheat bread. For simplicity, we may assume that
meat, vegetable, and bread layers of a hamburger is a string.

Contents of header file of Hamburger class, Hamburger.hpp, are as follows.� �
1 #ifndef Hamburger_H

2 #define Hamburger_H

3 #include <string>

4

5 class Hamburger{

6 public:
7 Hamburger();

8 Hamburger(std::string meat, std::string vegetable, std::string bread);

9 std::string getMeat() const;
10 std::string getVegetable() const;
11 std::string getBread() const;
12 int getCalories() const;
13 void setMeat(std::string meat); //change meat layer of the current hamburger

14 void setVegetable(std::string vegetable);

15 void setBread(std::string bread);

16

17 private:
18 std::string meat;

19 std::string vegetable;

20 std::string bread;

21 };

22 #endif� �
Contents of source code of Hamburger class, Hamburger.cpp, are as follows.� �

1 #include "Hamburger.hpp"

2

3 Hamburger::Hamburger() : Hamburger("beef", "lettuce", "wheat bread")

4 //Hamburger("beef", "lettuce", "wheat bread") means to call

5 //Hamburger(std::string meat, std::string vegetable, std::string bread)

6 //with parameters "beef", "lettuce", and "wheat bread",

7 //it is like to call a Hamburger maker specifying the contents of

8 //meat-, vegetable-, and bread-layers.

9 {

10

7

11 }

12

13 Hamburger::Hamburger(std::string meat, std::string vegetable, std::string bread) {

14 //TODO: initialize data members meat, vegetable and bread by

15 //the corresponding given parameters in the constructor, correspondingly.

16 }

17

18 //omit methods of Hamburger class.� �
2.3 A nondefault constructor Board(int** arr, int m, int n)

1. If both given parameters m and n are larger than or equal to 2, use m and n to set data members numRows
and numCols, respectively, otherwise, set data members numRows and numCols to be 3.

Set the elements of panel to be 1, 2, · · · , numRows * numCols-1. The numbers are placed from the top row
to the bottom row, and in each row, from left to right. No randomize is needed at this step.

2. Otherwise, dynamically apply for space to hold a numRows * numCols integer array. Put the initial address
in data member panel.

3. Set the elements of panel to be the same arrangement as that of given parameter arr.

You may notice that there are a lot of common codes among those constructors. A better way is to define
Board(int m, int n). Then use constructor delegate to define Board() and Board(int** arr, int m, int

n).� �
1 //TODO: fill in ? in the parentheses.

2 //Hint: what are the values of numRows and numCols for a default Board object?

3 Board::Board() : Board(?, ?) {

4 //Question: after calling Board(?, ?) to create a Board object with

5 //? * ? two-dimensional array,

6 //is there any additional thing to do in the default constructor?

7 }

8

9 Board::Board(int m, int n) {

10 //TODO: Write your codes here

11 }

12

13 //TODO: fill in ?? and ??? in the parentheses.

14 //Hint: what are the values of numRows and numCols

15 // for a Board object with m rows and n columns?

16 Board::Board(int** arr, int m, int n) : Board(??, ???) {

17 //TODO: after panel saves the address of a dynamically allocated

18 //m by n two dimensional array, how to set the values of panel

19 //to be those of arr?

20 }� �
2.4 The destructor

The purpose of destructor is to release the dynamically allocated memory allocated to an object. The destructor
has the same name as class, with ∼ in front of it. No return type, not even void. No parameter.

8

Normally we do not need to call the destructor explicitly, when an object is no longer needed – for example,
out of its definition scope – C++ will call the destructor automatically.

2.5 Finish Task A

1. Define constructors and the destructor in Board.cpp.

2. Test codes locally.

(a) Comment private: line in Board.hpp as //private:. This is for debug purpose.

(b) Edit main.cpp as follows.� �
1 #include <iostream>

2 #include "Board.hpp"

3 //g++ -std=c++11 Board.cpp main.cpp

4 //test default constructor using

5 //./a.out A or ./a.out ’A’

6 //./a.out B or ./a.out ’B’

7 //./a.out C or ./a.out ’C’

8

9 int main(int argc, const char *argv[]) {

10 if (argc != 2) {

11 std::cout << "Need ’A’-’C’ in parameters" << std::endl;

12 return -1;

13 }

14

15 //unit-testing for constructors and the destructor

16 char type = *argv[1];

17 std::string prompt;

18 Board *game;

19 int numRows = 3;

20 int** arr;

21 if (type == ’A’) {

22 prompt = "default constructor,";

23 game = new Board;

24 }

25 else if (type == ’B’) {

26 prompt = "Board game(3, 5);";

27 game = new Board(3, 5);

28 }

29 else if (type == ’C’) {

30 prompt = "Board game(arr, 3, 3);";

31 const int NUM_COLS = 3;

32 int brr[][NUM_COLS] = { {3, 9, 8}, {5, 7, 2}, {1, 6, 4} };

33 arr = new int*[numRows];
34 for (int row = 0; row < numRows; row++) {

35 arr[row] = new int[NUM_COLS];
36 for (int col = 0; col < NUM_COLS; col++)

37 arr[row][col] = brr[row][col];

38 }

9

39 game = new Board(arr, 3, 3);

40 }

41

42 std::cout << "After " << prompt

43 << " data member numRows is " << game->numRows << std::endl;

44 std::cout << "After " << prompt

45 << " data member numCols is " << game->numCols << std::endl;

46 std::cout << "After " << prompt

47 << " data member panel is " << std::endl;

48

49 for (int row = 0; row < game->numRows; row++) {

50 for (int col = 0; col < game->numCols; col++) {

51 std::cout << game->panel[row][col];

52 if (col < game->numCols-1) //skip the last ,

53 std::cout << ",";

54 }

55 std::cout << std::endl;

56 }

57

58 game->~Board();

59 std::cout << "After calling destructor, data member panel is " << game->panel <<

std::endl;

60

61 if (type == ’C’) {

62 //release dynamically allocated memory for arr

63 for (int row = 0; row < numRows; row++) {

64 delete[] arr[row];

65 arr[row] = nullptr;

66 }

67 delete[] arr;

68 arr = nullptr;

69 }

70

71 return 0;

72 }� �
Explanation of the code is as follows.

i. Normally we use
int main(), when such file is compiled and runnable, we use
./a.out

In our version, the first parameter is number of parameters, the second parameter is an array of
char* (aka string in C), which represents the parameters.
int main(int argc, char* argv[])

Suppose the following contents are saved in test.cpp.� �
1 #include <iostream>

2

3 int main(int argc, char* argv[]) {

4 std::cout<<argv[1] << std::endl;

5

10

6 return 0;

7 }� �
If run the following command, the phrase “Hello, world” is put in argv[1], the second parameter.

g++ test.cpp

./a.out "Hello, world"

Output “Hello, world” without quotes.

ii. In the above main.cpp, we test default constructor when command parameter is ‘A’, non-default
constructor Board(int, int) when command parameter is ‘B’, and non-default constructor Board(int**,
int, int) when command parameter is ‘C’.

(c) Run the following command to compile main.cpp and Board.cpp.

g++ -std=c++11 main.cpp Board.cpp

(d) If there is no compilation errors, run the following command.

./a.out A

(e) You should be able see something like the following.

After default constructor, data member numRows is 3

After default constructor, data member numCols is 3

After default constructor, data member panel is

1,2,3

4,5,6

7,8,9

After calling destructor, data member panel is 0x0

In Linux, the output of the last line is

After calling destructor, data member panel is 0

(f) If you test non-default construtor Board(int m, int n) using

./a.out B

You should see the following output.

After Board game(3, 5); data member numRows is 3

After Board game(3, 5); data member numCols is 5

After Board game(3, 5); data member panel is

1,2,3,4,5

6,7,8,9,10

11,12,13,14,15

After calling destructor, data member panel is 0x0

(g) If you test non-default construtor Board(int m, int n) using

./a.out C

You should see the following output.� �
1 After Board game(arr, 3, 3); data member numRows is 3

2 After Board game(arr, 3, 3); data member numCols is 3

3 After Board game(arr, 3, 3); data member panel is

4 3,9,8

5 5,7,2

6 1,6,4

7 After calling destructor, data member panel is 0x0� �
11

3. Or you can test the code in https://www.onlinegdb.com/online_c++_compiler.

Upload main.cpp, Board.hpp (comment private: line) and Board.cpp to onlinegdb. In the textbox right to
Command line arguments:, enter A or B or C.

Figure 1: Test Task A in onlinegdb.com

4. If the code runs well in local computer, upload Board.cpp to gradescope.

3 Task B: define randomize, getInfo, display, and valueCorrect methods

In Task A, we write codes for constructors and the destructor.

1. Initialize numRows and numCols to be valid integers, representing number of rows and number of columns of
a two-dimensional array, respectively.

2. Allocate memory to hold a two-dimensional array with numRows rows and numCols columns, and put the
intial address to panel.

3. Put integers from 1 to numRows * numCols to the array from the top row to the bottom row, and for the
same row, from left to right.

4. It remains to randomize the elements in the array. This is done in method randomize.

5. After randomization, need to find out the row and column indices of the empty cell and store them in
emptyCellRow and emptyCellCol data members. In our project, integer numRows * numCols resides in the
empty cell.

6. Furthermore, need to calculate the number of non-empty cells with correct value placed in. That is,
at row index i and column index j, where 0 ≤ i < numRows and 0 ≤ j < numCols, its value is 1 ≤
i ∗ numCols+ j + 1 ≤ numRows ∗ numCols.

12

https://www.onlinegdb.com/online_c++_compiler
https://www.onlinegdb.com/online_c++_compiler

3.1 Method randomize

Must follow the following steps to randomize the layout of integers in panel, or your code fails gradescope.
Suppose a panel is laid out as follows.

0 1 2

panel +--------+ +----+----+----+

0 | |-->| 1 | 2 | 3 |

+--------+ +----+----+----+

1 | |-->+----+----+----+

+--------+ | 4 | 5 | 6 |

+----+----+----+

We find out panel[0][0] to be 1, panel[0][1] to be 2, · · · , panel[1][1] to be 5, and panel[1][2] to be 6.
So panel as a dynamically allocated 2-dimensional array can be TREATED as the following statically allocated
2-dimensional array. The difference is, for a statically allocated 2-dimensional array, the number of columns must
be a constant, while for a dynamically allocated one, its number of columns can be a variable.

panel col index

row index 0 1 2
0 1 2 3
1 4 5 6

3.1.1 One approach to randomize elements in data member panel

In this approach, we do the following:

1. Create a dynamically allocated one-dimensional array or use a vector of integers to hold elements from 1 to
numRows * numCols.

index in one-dimensional array 0 1 2 3 4 5
element at the index 1 2 3 4 5 6

2. Randomize the layout of integers in the above array. For details, see the following steps. Here is an
illustration of randomized result.

index in one-dimensional array 0 1 2 3 4 5
element at the index 2 1 3 5 6 4

3. Copy the elements back to panel, from the top row to the bottom row; in the same row, from left to right.

panel col index

row index 0 1 2
0 2 1 3
1 5 6 4

4. If we use a dynamically allocated array in Step 1, need to release dynamically allocated memory. Remember
to handle dangling pointer problem.

Here are steps to randomize the layout of integers in a one-dimensional array with elements 1, · · · , numRows *

numCols.

13

1. From the first index to the last index, place elements 1, · · · , numRows * numCols to the array. Assume that
numRows is 2 and numCols is 3. Then we have the following array.

index in one-dimensional array 0 1 2 3 4 5
element at the index 1 2 3 4 5 6

2. Let currLastIdx be the current last index of the array. Initialize it to be (you fill in the blank,
this expression is related with numRows and numCols.) In our example, it is 5, since we have numRows *
numCols elements, and the index starts from 0.

3. Choose a random index from 0 to currLastIdx. Assume that index 2 is selected. Save the index in variable
k. So element 3 indexed at 2 is selected.

index in one-dimensional array 0 1 2 3 4 5
element at the index 1 2 3 4 5 6

4. Swap the element indexed at k with the element indexed at current last index currLastIdx. Doing so would
avoid to select that same element again in next round of randomization. In the above example, we get the
following layout.

Before swapping:

currLastIdx

↓
index in one-dimensional array 0 1 2 3 4 5

element at the index 1 2 3 4 5 6
↑
k

After swapping:

index in one-dimensional array 0 1 2 3 4 5
element at the index 1 2 6 4 5 3

5. Reduce currLastIdx by 1. The array looks as follows, as if the last element were truncated. So element 3,
which is indexed at 5 after one randomization, will not be selected again.

currLastIdx

↓
index in one-dimensional array 0 1 2 3 4 5

element at the index 1 2 6 4 5 3

6. Choose a random index from 0 to currLastIdx.

(a) Suppose index 1 is selected. Save it in variable k.

currLastIdx

↓
index in one-dimensional array 0 1 2 3 4 5

element at the index 1 2 6 4 5 3
↑
k

(b) Swap the element at random index with element at currLastIdx.

14

currLastIdx

↓
index in one-dimensional array 0 1 2 3 4 5

element at the index 1 5 6 4 2 3

7. Reduce currLastIdx by 1. So we only need to concentrate on the following one-dimensional array, ignoring
the grayed cells.

currLastIdx

↓
index in one-dimensional array 0 1 2 3 4 5

element at the index 1 5 6 4 2 3

8. Repeat Steps 3, 4, and 5 until currLastIdx is 0, when randomization is done.

Here is a pseudocode.� �
1 //Suppose elements 1, ..., numRows * numCols are saved in array temp,

2 //from the first index to the last index.

3

4 declare and initialize currLastIdx to be ...

5 while (currLastIdx > 0)

6 begin

7 select a random integer in [0, currLastIdx], save in variable k.

8 swap temp[k] with temp[currLastIdx]

9 decrease currLastIdx by 1

10 end� �
3.1.2 Another approach to randomize elements in data member panel

In the previous approach, we use a one-dimensional array to save the data, randomize them, then copy the
randomized data back to data member panel. In this approach, we randomize directly in two-dimensional array
panel, without the need to use a one-dimensional array.

Label elements in data member panel from the top row to the last row; in the same row, from left to right.
Label the top left element as 0, its right neighbor to be 1, and so on.

Map label k, where 0 ≤ k ≤ numRows ∗ numCols − 1, to row index k/numCols and column index k%numCols.
For example, when k is 5, the corresponding row index is 5/3 = 1 and the column index is 5%3 = 2.

panel col index

row index 0 1 2
0 1 2 3
1 4 5 6

labels of elements col index

row index 0 1 2

0 0 1 2

1 3 4 5

Next we will randomize elements in the two-dimensional array as follows.

1. Initialize currLastIdx to be (you fill in the blank, this expression is related with numRows and
numCols). In our example, it is 2 ∗ 3− 1 = 5.

2. Select a random integer in [0, currLastIdx], where 0 in the first label and 5 is the last label. Suppose 2
is chosen.

15

3. Map label 2 back to row index 2 / numCols = 2 / 3 = 0 and 2 % numCols = 2 % 3 = 2 in the two-
dimensional array.

4. Map currLastIdx 5 back to row index 5 / numCols = 5 / 3 = 1 and 5 % numCols = 5 % 3 = 2 in the
two-dimensional array.

5. Swap elements at (0, 2) and (1, 2) in the original two-dimensional array panel.

It is like element indexed at (0, 2) in the two-dimensional array is chosen, we swap it with the element at
currLastIdx to avoid to choose it again.

panel col index

row index 0 1 2
0 1 2 6
1 4 5 3

6. Reduce currLastIdx by 1.

7. Repeat Steps 2-6 until currLastIdx is reduced to be 0.

Here is a pseudocode.� �
1 declare and initialize currLastIdx to be ...

2 while (currLastIdx > 0)

3 begin

4 select a random integer in [0, currLastIdx], save in variable k.

5 swap panel[k / numCols][k % numCols] with panel[currLastIdx / numCols][currLastIdx %

numCols]

6 decrease currLastIdx by 1

7 end� �
3.2 Define method display

This method prints out the layout of panel in tabular format to the screen, if a cell has value numRows * numCols,
print as an empty cell. Suppose the current value of panel is as follows.

panel col index

row index 0 1 2
0 2 1 3
1 6 5 4

After calling display method, print out the following to the screen. Note that value numRows * numCols is
shown as an empty cell.

+-----+-----+-----+

| 2 | 1 | 3 |

+-----+-----+-----+

| | 5 | 4 |

+-----+-----+-----+

You may call the following function when defining display method.

16

� �
1 void printSeparateLine(int numCols) {

2 std::cout << "+";

3 for (int col = 0; col < numCols; col++)

4 std::cout << "-----+";

5

6 std::cout << std::endl;

7 }� �
3.3 Define method valueCorrect

Value numRows * numCols is displayed as an empty cell. This method finds out whether a non-empty cell has the
correct value resided. That is, given a cell with row index row and column index col, if the element residing at
the cell equals row * numCols + col + 1 and the element is in [1, numRows * numCols -1], then return true,
otherwise, return false.

Suppose the values of data member panel is as follows.

panel col index

row index 0 1 2
0 2 1 3
1 6 5 4

expected output when the game succeeds col index

row index 0 1 2
0 1 2 3
1 4 5

Note that only numbers 1, 2, · · · , numRows * numCols -1 are displayed. As a result, even if value numRows *

numCols resides the bottom right cell with row index numRows - 1 and column index numCols - 1, however, it
is shown as an empty cell, thus valueCorrect(numRows -1, numCols -1) still returns false.

In the above distribution of panel, only elements at (0, 2) and (1, 1) – in green cells – are in their correct
positions. That is, valueCorrect(0, 2) returns true, so is valueCorrect(1, 1).

3.4 Define method getInfo

In this method, check elements in data member panel, count the number of non-empty cells with correct place-
ments, save that number in numCorrect, find out the row index of the empty cell and put it in emptyCellRow.
Do similar thing for emptyCellCol.

After a randomization, use this method to initialize data members numCorrect, emptyCellRow, and emptyCellCol.
That is, call method getInfo in the end of randomize method.

3.5 Submission of Task B

Based on code of Board.cpp in Task A, do the following steps. Then submit Board.cpp to gradescope.

1. In Board::Board(int** arr, int m, int n), the elements in data member panel are laid out prop-
erly already; no need to randomize anymore. But need to call getInfo method to initialize numCorrect,
emptyCellRow, and emptyCellCol.

2. Define valueCorrectmethod. You may need to call this method in getInfomethod to calculate numCorrect.

3. Define getInfo method. Call it in randomize method.

4. Define randomize method. Call it in constructors Board::Board() and Board::Board(int m, int n).

5. Define display method.

6. Test locally before uploading to gradescope.

17

(a) Comment private: line in Board.hpp as //private:. This is for debug purpose. Need to uncomment
when release the product.

(b) Comment all occurrences of srand statements in Board.cpp.

(c) Upload Board.hpp and Board.cpp to https://www.onlinegdb.com/online_c++_compiler. Note that
compilers in different operating systems – linux, Mac, windows – may get different random numbers for
srand statement. onlinegdb runs in Linux and has the same results in servers of gradescope.

(d) Edit main.cpp in onlinegdb.� �
1 #include <iostream>

2 #include "Board.hpp"

3 #include <cstdlib> //srand

4

5 int main() {

6 std::cout << "Use srand(2) and default constructor" << std::endl;

7 srand(2);

8 Board game;

9 game.display();

10 std::cout << "number of correct cells: " << game.numCorrect << std::endl;

11 std::cout << "row of empty cell: " << game.emptyCellRow << std::endl;

12 std::cout << "column of empty cell: " << game.emptyCellCol << std::endl;

13

14 std::cout << "\nUse srand(8) and constructor Board(int m, int n)" << std::endl;

15 srand(8);

16 Board game2(3, 4);

17 game2.display();

18 std::cout << "number of correct cells: " << game2.numCorrect << std::endl;

19 std::cout << "row of empty cell: " << game2.emptyCellRow << std::endl;

20 std::cout << "column of empty cell: " << game2.emptyCellCol << std::endl;

21 return 0;

22 }� �
(e) You should get the following output.

Use srand(2) and default constructor

+-----+-----+-----+

| 4 | 5 | 1 |

+-----+-----+-----+

| 3 | 2 | |

+-----+-----+-----+

| 6 | 8 | 7 |

+-----+-----+-----+

number of correct cells: 1

row of empty cell: 1

column of empty cell: 2

Use srand(8) and constructor Board(int m, int n)

+-----+-----+-----+-----+

| 10 | 4 | 1 | 11 |

+-----+-----+-----+-----+

18

https://www.onlinegdb.com/online_c++_compiler
https://www.onlinegdb.com/online_c++_compiler

| 2 | | 7 | 8 |

+-----+-----+-----+-----+

| 9 | 3 | 6 | 5 |

+-----+-----+-----+-----+

number of correct cells: 3

row of empty cell: 1

column of empty cell: 1

(f) If everything runs fine, upload Board.cpp to gradescope.

4 Task C: define slideUp, slideDown, slideLeft, and slideRight methods

Whenever we slide up/down/left/right, empty cell may be changed, so is the number of elements in correct
placement. So we need to update data members emptyCellRow, emptyCellCol, and numCorrect in these methods.

4.1 Define method slideUp

1. Call element underneath a cell its downstair neighbor.

2. If the empty cell has no downstair neighbor, that is, the empty cell is on the last row already, ie, emptyCellRow
+1 >= numRows or emptyCellRow == numRows -1, there is nothing to do in slide up operation. Return to
the caller.

panel col index

row index 0 1 2
0 4 5 1
1 3 2 6
2 8 9 7

display result col index

row index 0 1 2
0 4 5 1
1 3 2 6
2 8 7

3. Now the empty cell has a downstair neighbor. Do the following in slide up operation:

(a) If the downstair neighbor of the empty cell is at its correct location before sliding up, that is, call
valueCorrect on this neighbor, the return is true, then after sliding up, this cell is not in the correct
position, so numCorrect is decreased by 1.

Before sliding up (the cells where elements are in good positions are in green color):

panel col index

row index 0 1 2
0 4 5 1
1 6 9 2
2 7 8 3

display result col index

row index 0 1 2
0 4 5 1
1 6 2
2 7 8 3

After sliding up (the cells where elements are in good positions are in green color):

panel col index

row index 0 1 2
0 4 5 1
1 6 9 2
2 7 8 3

display result col index

row index 0 1 2
0 4 5 1
1 6 8 2
2 7 3

(b) Sliding up takes several steps.

19

i. Downstair neighbor moves up and the empty cell moves down. That is, swap element at the empty
cell with its downstair neighbor.

ii. After the above swapping, the value of downstair neighbor resides in the previous empty cell. If,
after swapping, the element is in correct position, then numCorrect is increased by 1.

A. To test whether an element is in correct position, we can use valueCorrect method, which
takes row- and column- indices as parameters.

B. Observe that the old downstair neighbor takes up the position of the previous empty cell. Before
we update the row- and col- indices for newly empty cell, the row index of old downstair neighbor
is emptyCellRow and the column index is emptyCellCol, but the value panel[emptyCellRow][emptyCellCol]
is the value of old downstair neighbor after swapping.

C. That is, call valueCorrect on emptyCellRow and emptyCellCol, check the return. If the
return is true, then increase numCorrect by 1.

Before sliding up (the cells where elements are in good positions are in green color):

panel col index

row index 0 1 2
0 1 3 2
1 7 8 9
2 4 5 6

display result col index

row index 0 1 2
0 1 3 2
1 7 8
2 4 5 6

After sliding up (the cells where elements are in good positions are in green color):

panel col index

row index 0 1 2
0 1 3 2
1 7 8 9
2 4 5 6

display result col index

row index 0 1 2
0 1 3 2
1 7 8 6
2 4 5

iii. Update emptyCellRow but not emptyCellCol (why??) for the current empty cell.

(c) Call display() method to display panel in tabular format after sliding up.

(d) Warning: you may opt to call getInfo method to update values for emptyCellRow, emptyCellCol, and
numCorrect after swapping the previous empty cell with its downstair neighbor. This approach works
but is not efficient.

i. Reason: method getInfo goes through every cell in panel to check. It is necessary when we
re-arrange elements of panel in method randomize.

ii. However, in slideUp method, only the empty cell and its downstair neighbor are re-arranged, call
getInfo method is overkill.

4.2 Submission for Task C

Define methods slideUp, slideDown, slideLeft, and slideRight in Board.cpp from Task B, submit to
gradescope.

5 Task D: define play method

Skeleton of play method is as follows.� �
1 #include "Board.hpp"

2 #include <iomanip> //setw

20

3 #include <cstdlib> //rand, srand

4 #include <ctime> //rand, srand

5 #include <iostream> //cout, endl

6

7 //TODO: add codes from Task C

8

9 void Board::play() {

10 display();

11 int move = 0;

12 while () { //TODO: fill in condition

13 char ch = getchar();

14 if (ch == ’S’ || ch == ’s’) //STOP

15 break;
16

17 if (ch == ’\[’) { // if the first value is esc

18 getchar(); // skip the [

19 switch(getchar()) { // the real value

20 case ’A’:

21 // code for arrow up

22 move++;

23 std::cout << "\nMove " << std::setw(4) << move << ": ";

24 std::cout << "Slide UP." << std::endl;

25 slideUp();

26 break;
27 case ’B’:

28 //TODO: code for arrow down

29 case ’C’:

30 //TODO: code for arrow right

31

32 case ’D’:

33 //TODO: code for arrow left

34 }

35 }

36 }

37

38 std::cout << "\nCongratulations. Total number of moves is " << move << "." << std::endl;

39 }� �
Submit Board.cpp to gradescope.

6 Wrap up: define BoardTest.cpp and create makefile

1. Create BoardTest.cpp with the following contents. The purpose of BoardTest.cpp is to test constructors
and methods defined in Board.cpp.� �

1 #include "Board.hpp"

2 #include <iostream>

3 #include <string>

4 using namespace std;

21

5

6 int main() {

7 //TODO: declare a board object called game using its default constructor

8

9 //TODO: call play method of Board object game.

10

11 return 0;

12 }� �
2. Edit a file called makefile with the following contents. You can download the file from https://tong-yee.

github.io/135/f24/makefile.

makefile includes instructions on how to compile and link multiple files in a project.

This is an example Makefile for number shuffle project.

This program uses Board and BoardTest modules.

Typing ’make’ or ’make run’ will create the executable file.

#

define some Makefile variables for the compiler and compiler flags

to use Makefile variables later in the Makefile: $()

#

-g adds debugging information to the executable file

-Wall turns on most, but not all, compiler warnings

#

for C++ define CC = g++

CC = g++ -std=c++11

#CFLAGS = -g -Wall

typing ’make’ will invoke the first target entry in the file

(in this case the default target entry)

you can name this target entry anything, but "default" or "all"

are the most commonly used names by convention

#

all: run

To create the executable file shuffle (see -o shuffle), we need the object files

BoardTest.o and Board.o:

run: BoardTest.o Board.o

$(CC) -o shuffle BoardTest.o Board.o

To create the object file BoardTest.o, we need the source

files BoardTest.cpp, Competition.h

BoardTest.o: BoardTest.cpp

$(CC) -c BoardTest.cpp

To create the object file Board.o, we need the source files

Board.cpp.

By default, $(CC) -c Board.cpp generates Board.o

22

https://tong-yee.github.io/135/f24/makefile
https://tong-yee.github.io/135/f24/makefile
https://tong-yee.github.io/135/f24/makefile
https://tong-yee.github.io/135/f24/makefile

Board.o: Board.cpp

$(CC) -c Board.cpp

To start over from scratch, type ’make clean’. This

removes the executable file, as well as old .o object

files and *~ backup files:

#

clean:

$(RM) shuffle *.o *~

According to the command in this makefile,

$(CC) -o shuffle BoardTest.o Board.o

The generated runnable file is called shuffle, which appears after -o.

3. Run make command.

make

4. If there is no error in the above command, run the following command, where dot (.) means current directory.

./shuffle

5. If you modify any Board.hpp, Board.cpp, or BoardTest.cpp, just run commands in Steps 3 and 4. With a
properly defined makefile, only modified source codes are re-compiled and re-linked.

Using makefile simplifies management of a project with many files.

7 One Solution

In onlinegdb, upload Board.hpp and Board.cpp. And write the following code in main.cpp of onlinegdb.� �
1 #include <iostream>

2 #include "Board.hpp"

3 #include <cstdlib> //srand

4

5 int main() {

6 srand(2);

7

8 Board game(2, 3);

9 game.play();

10

11 return 0;

12 }� �
Click run button and the output should be as follows.

+-----+-----+-----+

| 4 | 2 | 3 |

+-----+-----+-----+

| | 5 | 1 |

+-----+-----+-----+

^[[D

23

Move 1: Slide LEFT.

+-----+-----+-----+

| 4 | 2 | 3 |

+-----+-----+-----+

| 5 | | 1 |

+-----+-----+-----+

^[[D

Move 2: Slide LEFT.

+-----+-----+-----+

| 4 | 2 | 3 |

+-----+-----+-----+

| 5 | 1 | |

+-----+-----+-----+

^[[B

Move 3: Slide DOWN.

+-----+-----+-----+

| 4 | 2 | |

+-----+-----+-----+

| 5 | 1 | 3 |

+-----+-----+-----+

^[[C

Move 4: Slide RIGHT.

+-----+-----+-----+

| 4 | | 2 |

+-----+-----+-----+

| 5 | 1 | 3 |

+-----+-----+-----+

^[[A

Move 5: Slide UP.

+-----+-----+-----+

| 4 | 1 | 2 |

+-----+-----+-----+

| 5 | | 3 |

+-----+-----+-----+

^[[C

Move 6: Slide RIGHT.

+-----+-----+-----+

| 4 | 1 | 2 |

+-----+-----+-----+

| | 5 | 3 |

+-----+-----+-----+

^[[B

Move 7: Slide DOWN.

+-----+-----+-----+

| | 1 | 2 |

+-----+-----+-----+

| 4 | 5 | 3 |

+-----+-----+-----+

^[[D

24

Move 8: Slide LEFT.

+-----+-----+-----+

| 1 | | 2 |

+-----+-----+-----+

| 4 | 5 | 3 |

+-----+-----+-----+

^[[D

Move 9: Slide LEFT.

+-----+-----+-----+

| 1 | 2 | |

+-----+-----+-----+

| 4 | 5 | 3 |

+-----+-----+-----+

^[[A

Move 10: Slide UP.

+-----+-----+-----+

| 1 | 2 | 3 |

+-----+-----+-----+

| 4 | 5 | |

+-----+-----+-----+

Congratulations! Total number of moves: 10

8 Optional: not every puzzle can be solved

Example 1: there is no way to slide left or right to put 1 and 2 to the leftmost two positions.

+-----+-----+-----+

| 2 | 1 | |

+-----+-----+-----+

Example 2: here is an illustration for an unsolvable 2 x 2 puzzle. After an eligible move, if a layout is not shown
before, it is drawn and labeled, otherwise, just list the label with the redundant layout.

(1) +-----+-----+

| 1 | 3 |

+-----+-----+

| | 2 |

+-----+-----+

/ \

left / \ down

/ \

(2) +-----+-----+ (3) +-----+-----+

| 1 | 3 | | | 3 |

+-----+-----+ +-----+-----+

| 2 | | | 1 | 2 |

+-----+-----+ +-----+-----+

/ \ / \

right / \ down left / \ up

/ \ / \

25

(1) (4) +-----+-----+ (5) +-----+-----+ (1)

| 1 | | | 3 | |

+-----+-----+ +-----+-----+

| 2 | 3 | | 1 | 2 |

+-----+-----+ +-----+-----+

/ \ / \

right / \ up right / \ up

/ \ / \

(6) +-----+-----+ (2) (3) (7) +-----+-----+

| | 1 | | 3 | 2 |

+-----+-----+ +-----+-----+

| 2 | 3 | | 1 | |

+-----+-----+ +-----+-----+

/ \ / \

left / \ up right / \ down

/ \ / \

(4) (8) +-----+-----+ (9) +-----+-----+ (5)

| 2 | 1 | | 3 | 2 |

+-----+-----+ +-----+-----+

| | 3 | | | 1 |

+-----+-----+ +-----+-----+

/ \ / \

left / \ down left / \ down

/ \ / \

(10) +-----+-----+ (6) (7) (11) +-----+-----+

| 2 | 1 | | | 2 |

+-----+-----+ +-----+-----+

| 3 | | | 3 | 1 |

+-----+-----+ +-----+-----+

/ \ / \

right / \ down right / \ up

/ \ / \

(8) (12) +-----+-----+ (12) (9)

| 2 | |

+-----+-----+

| 3 | 1 |

+-----+-----+

/ \

right / \ up

/ \

(11) (10)

9 Optional: solvable and optimization

Use Breadth First Search (BFS), introduced in CS 235, we can do the following:

• Find out whether a puzzle is solvable or not.

• If solvable, find a solution with the minimum number of moves.

26

10 Optional: public vs. private methods

If we do not want users to call the methods of a class, we may set them to be private. For example, methods
randomize, getInfo, valueCorrect in Board class. It is like, for login method of BankAccount class may call
verification method to test whether a username and a password are correct or not. However, for users, login
method can be called directly, but not verification method. So login method is set to be public while verification
method is set to be private.

27

	Files of the Project
	Explanation of Board.hpp
	Include guard

	Data members

	Task A: Define constructors and destructors in Board.cpp
	The default constructor Board()
	A nondefault constructor Board(int m, int n)
	A nondefault constructor Board(int** arr, int m, int n)
	The destructor
	Finish Task A

	Task B: define randomize, getInfo, display, and valueCorrect methods
	Method randomize
	One approach to randomize elements in data member panel
	Another approach to randomize elements in data member panel

	Define method display
	Define method valueCorrect
	Define method getInfo
	Submission of Task B

	Task C: define slideUp, slideDown, slideLeft, and slideRight methods
	Define method slideUp
	Submission for Task C

	Task D: define play method
	Wrap up: define BoardTest.cpp and create makefile
	One Solution
	Optional: not every puzzle can be solved
	Optional: solvable and optimization
	Optional: public vs. private methods

