
Topic 2

1. Variables
2. Arithmetic
3. Input and output
4. Problem solving: first do it by hand
5. Strings
6. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Arithmetic Operators

C++ has the same arithmetic
operators as a calculator:

* for multiplication: a * b
(not a . b or ab as in math)

/ for division: a / b
(not ÷ or a fraction bar as in math)

+ for addition: a + b

- for subtraction: a – b

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Arithmetic Operator Precedence

Just as in regular algebraic notation,
* and / have higher precedence
than + and –.

In a + b / 2,
the b / 2 happens first.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Increment and Decrement

• Changing a variable by adding or subtracting 1 is so
common that there is a special shorthand for these:

The increment and decrement operators.
count++; // add 1 to count
count--; // subtract 1 from count

Example:
What is the value of variable count after the code below?

int count = 3;
count--;
count = count + 2;
count++;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Increment and C++

C++ was based on C and so it’s one better than C, right?

Guess how C++ got its name!

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The % operator computes the remainder of an integer division.

It is called the modulus operator (also modulo and mod)

It has nothing to do with the % key on a calculator

Integer Division and Remainder

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Integer Division and Remainder Example

• You want to determine the value in dollars and cents stored in
the piggy bank.

• You obtain the dollars through an integer division by 100.
• The integer division discards the remainder.

• To obtain the remainder (the cents), use the % operator:

int pennies = 1729;
int dollars = pennies / 100; // Sets dollars to 17
int cents = pennies % 100; // Sets cents to 29

(yes, 100 is a magic number)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

More Integer Division and Remainder Examples

• What is the result from each of the following?

_______ 27 / 4

_______ 27.0 / 4

_______ 27 % 4

_______ -27 % 4

_______ 27 % 10

_______ 27 % 2

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Integer division vs. Division

When both dividend (3) and divisor (2) are integers
• 3 / 2 = 1 (Why???)
When at least one of dividend and divisor is a real
number (number with decimals)
• 3. / 2 = 1.5
• 3 / 2.0 = 1.5
• 3.0 / 2.0 = 1.5

Why do we need integer division?

Integer Division and Remainder

• 6 kids with 10 apples
• Apples cannot be cut into pieces
• How many apple(s) can a kid get?
• How many apples are left?

It is like no
decimal

part.

Integer Division and Remainder

• 6 kids with 10 apples
• Apples cannot be cut into pieces
• How many apple(s) can a kid get? 1
• How many apples are left? 4

Integer Division and Remainder

• 6 kids with 10 apples
• Apples cannot be cut into pieces
• How many apple(s) can a kid get? 10 /

6 = 1
• How many apples are left? 10 % 6 = 4

Integer Division and Remainder

• Integer division: When both dividend (say,
10) and divisor (say, 6) are integers,
discard fraction part of division result. So
10 / 6 = 1.

• How many apple(s) can a kid get? 10 /
6 = 1

• How many apples are left? 10 % 6 = 4

Integer Division and Remainder

123 minutes = ? Hours ? minutes

Integer Division and Remainder

123 minutes = ? Hours ? Minutes
Solution:
(1)How many whole hours does 123 minutes

have?
One hour = 60 minutes.
123 / 60 = 2 hours

(2) After the above 2 hours, how many more
minutes does 123 minutes have?

123 – 60 * 2 = 3. (* means multiplication
in Java) or we use remainder operator %:

123 % 60 = 3 minutes

Integer Division and Remainder

Similarly, computer keeps track of system
time…
Starting from 1 January 1970 00:00:00,
there were 100000000 seconds elapsed,
what was that time?1 Jan 1970
00:00:00 +
100,000,000
secs = ?
Years ? Days
? Hours ?

Integer Division and Remainder

(1) 100000000 secs = ? minutes ? seconds
100000000 / 60 = 1666666 minutes
100000000 % 60 = 40 seconds.

(2) 1666666 minutes = ? Hours ? minutes
1666666 / 60 = 27777 hours
1666666 % 60

= 1666666 – 60 * 27777
= 46 minutes

Integer Division and Remainder

(1) 100000000 secs = 1666666 mins 40 secs
(2) 1666666 mins = 27777 Hours 46 mins
(3) 27777 hours = ? Days ? hours

27777 / 24 = 1157 days
27777 % 24 = 27777 – 1157 * 24 = 9

hours
(4) 1157 days = ? Years ? days

1157 / 365 = 3 years
1157 % 365 = 1157 – 3 * 365 = 62 days

Integer Division and Remainder

Starting from 1 January 1970 00:00:00,
there were 100,000,000 seconds elapsed,
what was that time?
(1) 100000000 secs = 1666666 mins 40
secs
(2) 1666666 minutes = 27777 Hours 46
minutes
(3) 27777 hours = 1157 Days 9 hours
(4) 1157 days = 3 Years 62 days
The time was 1973 March 3, 09: 46: 40.

Integer Division and Remainder

100000000 secs
1666666 mins 40 secs

27777 hrs 46 mins
1157 days 9 hrs

3 Years 62 days

Remainder operator %

• What time in the afternoon for 14:00 ?

• What time in the afternoon for 17:00 ?

14 % 12 = 2

Remainder operator % Example

• You are at top of a round roller coaster,
which turns another 380 degree in the next
few minutes. What will be your new
position?

Remainder Operator % Example 2

• Now is 9am. After 5 hours, it is 2pm.
(9 + 5) % 12 = 2

+ 5
hours

Converting Floating-Point Numbers to Integers

• When a floating-point value is assigned to an integer
variable, the fractional part is discarded:

double price = 2.55;
int dollars = price;

// Sets dollars to 2

• You probably want to round to the nearest integer.
To round a positive floating-point value to the nearest
integer, add 0.5 and then convert to an integer:

int dollars = price + 0.5;
// Rounds to the nearest integer

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

What about this?

Inside the parentheses is easy:

1 + (r / 100)

But that raised to the n?

Powers and Roots

÷
ø
ö

ç
è
æ ++
100

1 r n
b

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Powers and Roots – #include <cmath>

• In C++, there are no symbols for powers and roots.
To compute them, you must call functions.

• The C++ library defines many mathematical functions
such as sqrt (square root) and pow (raising to a power).

• To use the functions in this library, called the cmath
library, you must place the line:

#include <cmath>

at the top of your program file.
• It is also necessary to include

using namespace std;

at the top of your program file.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Example of pow() function call

The power function has the base followed by a comma
followed by the power to raise the base to:

pow(base, exponent)

Using the pow function:

double balance = b * pow(1 + r / 100, n);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Powers and Roots Examples: Table 5

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Mathematical
Expression C++ Expression Comments

(x + y) / 2
The parentheses are required; x + y/
2 computes x + (y/2) .

x * y / 2
Parentheses are not required; operators with
the same precedence are evaluated left to
right. xy as a math expression is x*y in C++

pow(1 + r / 100,
n)

Remember to add #include <cmath> to
the top of your program.

sqrt(a * a +
b * b) a * a is simpler than pow(a, 2).

(i + j + k) / 3.0 If i, j, and k are integers, using a denominator
of 3.0 forces floating-point division.

Other Mathematical Functions (from <cmath>): Table 6

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Example:
double population = 73693997551.0;
double decimal_log = log10(population);

Math Function Examples

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• Compute the result of each:

_______ pow(10, 3)

_______ sqrt(100)

_______ abs(3 - 10)

_______ log10(1000)
_______ max(3, -10)

_______ cos(3.1415926535)

_______ tan(M_PI/4)
//M_PI constant is defined in cmath library

Common Error – Unintended Integer Division

• If both arguments of / are integers,
the remainder is discarded:

7 / 3 is 2, not 2.5
• but

7.0 / 4.0
7 / 4.0
7.0 / 4

• all yield 1.75.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Unintended Integer Division, cont.

• It is unfortunate that C++ uses the same symbol: /
for both integer and floating-point division.
These are really quite different operations.

• It is a common error to use integer division by accident.
Consider this segment that computes the average of three
integers:

cout << "Please enter your last three test scores: ";
int s1;
int s2;
int s3;
cin >> s1 >> s2 >> s3;

double average = (s1 + s2 + s3) / 3; //ERROR
cout << "Your average score is " << average << endl;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

More on Unintended Integer Division

• What could be wrong with that?

• Of course, in math the exact average of s1, s2, and s3 is

(s1+ s2+ s3) / 3

• Here, however, the / denotes integer division because
• both (s1+s2+s3)and 3 are integers.

• For example, if the scores add up to 14, the average = 4.

• Yes, the result of the integer division of 14 by 3 is 4, and the fractional
0.66667 is discarded.

• That integer 4 is then moved into the double variable average.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Avoiding Unintended Integer Division

The remedy is to make the numerator or denominator
into a floating-point number:

double total = s1 + s2 + s3;
double average = total / 3;

or

double average = (s1 + s2 + s3) / 3.0;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Unbalanced Parentheses

Consider the expression

(-(b * b - 4 * a * c) / (2 * a)

What is wrong with it?

The parentheses are unbalanced.
This is very common with complicated expressions.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Unbalanced Parentheses – A Solution

The Muttering Method

Count starting with 1 at the 1st parenthesis
add one for each left paren(
and subtract one for each right paren)

- (b * b - (4 * a * c))) / 2 * a)
1 2 1 0 -1 -2

If your count is not 0 when you finish, or if
you ever drop to -1, then…

STOP, something is wrong.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Forgetting Header Files

• Every program that carries out input or output needs
the <iostream> header.

• If you use mathematical functions such as sqrt,
you need to include <cmath>.

• If you forget to include the appropriate header file,
the compiler will not know symbols such as

cout or sqrt.

• If the compiler complains about an undefined function
or symbol, check your header files.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Including the Right Header Files

• Sometimes you may not know which header file to include.

• Suppose you want to compute the absolute value of an
integer using the abs function.

• As it happens, this version of abs is not defined in the
<cmath> header but in <cstdlib>.

• How can you find the correct header file?
• Why do you think Tim Berners-Lee invented going online?

• Use a reference site on the Internet such as:
http://www.cplusplus.com, or just Google "C++ abs()"

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

http://www.cplusplus.com/

Spaces in Expressions

It is easier to read

x1 = (-b + sqrt(b * b - 4 * a * c)) / (2 * a);

than

x1=(-b+sqrt(b*b-4*a*c))/(2*a);

Itreallyiseasiertoreadwithspaces!

So always use spaces around all operators: + - * / % =

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Spaces in Expressions: Unary Minus, Parentheses

• However, don’t put a space after a unary minus: that’s a –
used to negate a single quantity like this: -b

• That way, it can be easily distinguished from a binary minus,
as in a - b

• It is customary not to put a space between a function name
and the parentheses.

Write sqrt(x)
not sqrt (x)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Casts

• Occasionally, you need to store a value into a variable of
a different type, or print it in a different way.

• A cast is a conversion from one type (such as int)
to another type (such as double).

• For example, how to print or capture an exact quotient
from two int variables?
int x= 25;
int y = 10;
cout << "The quotient is " << x / y;

//gives int quotient of 2, not what we want

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Casts Convert Variable Types

• The cast conversion syntax:
static_cast<newtype>(data_to_convert)

• For example, to get an exact quotient, we cast one of the
int variables to a double before dividing

int x= 25;
int y = 10;
cout << x / static_cast<double>(y);
//gives double quotient of 2.5

• An older version of the cast conversion syntax also works, but its use
is discouraged:

(newtype)data_to_convert

cout << x / (double)y;
//gives double quotient of 2.5

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Combining Assignment and Arithmetic

• In C++, you can combine arithmetic and assignments.
• For example, the statement

total += cans * CAN_VOLUME;

is a shortcut for
total = total + cans * CAN_VOLUME;

• Similarly,
total *= 2;

is another way of writing
total = total * 2;

• Many programmers prefer using this form of coding.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

